In numerical linear algebra, the Jacobi method is an algorithm for determining the solutions of a diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges. This algorithm is a stripped-down version of the Jacobi transformation method of matrix diagonalization. The method is named after Carl Gustav Jacob Jacobi.
#include<stdio.h> #include<conio.h> #include<math.h> float fx(float y,float z) { float x1; x1=4-2*y-3*z; return x1; } float fy(float x,float z) { float y1; y1=(8-5*x-7*z)/6; return y1; } float fz(float x,float y) { float z1; z1=(3-9*x-y)/2; return z1; } void main() { int i,j,n; float a1,b1,c1; float a,b,c; float ar[3][4],x[3]; clrscr(); printf("Enter the no. of Iteration : "); scanf("%d",&n); printf("Enter The initial value : "); scanf("%f %f %f",&a,&b,&c); for(i=0;i<n;i++) { for(j=0;j<n;j++) { a1=fx(b,c); b1=fy(a,c); c1=fz(a,b); a=a1; b=b1; c=c1; } } printf("a1 = %f\n a2 = %f\n a3 = %f",a1,b1,c1); getch(); }