Simpson's rule is a Newton-Cotes formula for approximating the integral of a function f using quadratic polynomials (i.e., parabolic arcs instead of the straight line segments used in the trapezoidal rule. Simpson's rule can be derived by integrating a third-order Lagrange interpolating polynomial fit to the function at three equally spaced points.
#include<stdio.h> #include<conio.h> #include<math.h> #define f(x) 1/(1+x); void main() { int n,i; float a,b,s,s1=0,s2=0,u,h,y; clrscr(); printf("Enter the uper limit: "); scanf("%f",&a); printf("Enter the lower limit: "); scanf("%f",&b); printf("Enter the interval: "); scanf("%d",&n); h=(a-b)/n; s=f(a)+f(b); for(i=1;i<=n-1;i++) { if(i%3==0) { s1=s1+2*f(a+(i*h)); } else { s2=s2+2*f(a+(i*h)); } u=((3*h)/8)*(s+s1+s2); } printf("Answer is: %f",u); getch(); }