The Gauss-Jordan elimination method to solve a system of linear equations is described in the following steps. 1. Write the augmented matrix of the system. 2. Use row operations to transform the augmented matrix in the form described below, which is called the reduced row echelon form (RREF).
#include<stdio.h> #include<conio.h> void main() { float a[3][4],t; int i,j,k; clrscr(); printf("Enter the elements in row-wise : \n"); for(i=0;i<3;i++) { for(j=0;j<4;j++) { printf("a[%d][%d] : ",i,j); scanf("%f",&a[i][j]); } } for(i=0;i<3;i++) { for(j=0;j<4;j++) { printf("%.0f ",a[i][j]); } printf("\n"); } printf("\n\n"); for(i=0;i<3;i++) { for(j=0;j<3;j++) { if(i!=j) { t=a[j][i]/a[i][i]; for(k=0;k<4;k++) a[j][k]=a[j][k]-(a[i][k]*t); } } } printf("In Matrix form : \n"); for(i=0;i<3;i++) { for(j=0;j<4;j++) { printf("\t %.0f",a[i][j]); } printf("\n"); } printf("\n\nSolution is = "); for(i=0;i<3;i++) { printf("%f ",a[i][3]/a[i][i]); } getch(); }