In numerical analysis, Newton's method (also known as the Newton–Raphson method), named after Isaac Newton and Joseph Raphson, is a method for finding successively better approximations to the roots (or zeroes) of a real-valued function.
#include<stdio.h> #include<conio.h> #include<math.h> #define e 0.001 #define F(x) (2*x)-3 float frac(float a) { float f1; f1=a*a-3*a+2; return f1; } void main() { float x1,x2,f1=0,f2,er,d; printf("F(x) = x^2-3x+2\n\n"); printf("Enter the value of x1: "); scanf("%f",&x1); printf("\nx1 = %f",x1); printf("\n______________________________________________________\n"); printf(" x1 | x2 | f1 | f'1 | |(x2-x1)/x2| | \n"); printf("--------------------------------------------------------\n"); do { f1=frac(x1); d=F(x1); x2=x1-(f1/d); er=fabs((x2-x1)/x2); printf(" %f | %f | %f | %f | %f | \n",x1,x2,f1,d,er); x1=x2; } while(er>e); printf("-------------------------------------------------------\n\n"); printf("\n Root of the equation is: %f",x2); getch(); }